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Fig. 5. Comparison of experimental () and simulated (�) results for MMIC
mixer performance.

MESFET from Kukje has been modeled and a monolithic-microwave-
integrated-circuit (MMIC) mixer has been designed and tested for
PCS applications. Fig. 5 shows the measured and simulation results
of the conversion gain for the frequency range from 0.95 to 2.05
GHz. The maximum conversion-gain difference is less than 1 dB.

IV. CONCLUSION

In this paper, a very simple new-channel-current model has been
proposed, which can represent the frequency-dispersion effects due to
traps, channel temperature effect, and higher order derivative terms of
Ids. The derivative terms are important for predicting nonlinear circuit
performance. The model parameters are extracted from the pulsedI–V
measurements at several ambient temperatures and quiescent bias
points. The extraction procedure is straightforward and simple. In
order to validate this model, a large-signal model has been extracted
for OKI KGF-1284 and Kukje MESFET. The extracted large-signal
MESFET models have been implemented using SDD in HP-EEsof
MDS. By comparing the pulsedI–V andS-parameter measurements
with simulation results, the accuracy of this model was verified. This
model has also been applied to the design of nonlinear circuits such
as power amplifiers and mixers. The harmonic-balance simulations
with the proposed model and the experimental results for fabricated
circuits confirm the accuracy of the proposed modeling.
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Two-Port Scattering at an Elliptic-Waveguide Junction

Kin-Lung Chan and Sunil R. Judah

Abstract—A concentric waveguide junction consisting of an elliptic
waveguide has been formulated using the mode-matching method. The
formulation is a generalized solution of the problem such that the second
waveguide, which forms the junction, can be any regular shape in
cross section. Exact closed-form expressions for computing the coupling
integrals have been obtained from the generalized formulation. As a
special case of the general solution, the expressions for evaluating the cou-
pling integrals of rectangular-to-elliptic, circular-to-elliptic, and elliptic-
to-elliptic waveguide junction are given. Theoretical results compare well
with the experimental and published results.

Index Terms—Elliptic waveguide, mode-matching method, waveguide
junction.

I. INTRODUCTION

One of the advantages of using elliptic waveguides is that the
spectral separation between propagating modes can be varied by
changing the eccentricity. It then prevents mode coupling due to im-
perfection of waveguide curvature or waveguide bending, as happens
in a circular waveguide. The desired propagating mode, therefore,
can be preserved. The use of elliptic waveguides is becoming
more popular in microwave systems and the behavior of transition
from waveguides having different geometries to elliptic waveguides
becomes important.

The formulations of waveguide discontinuities involving rectan-
gular or circular waveguides have been well documented in the
literature [1]–[5]. Recently, Matraset al. [6] studied the scattering
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Fig. 1. Waveguide 1 to elliptic-waveguide junction.

characteristic of a waveguide junction formed by two concentric-
confocal-elliptic waveguides. However, the discontinuity involving
elliptic waveguides has received scant attention. In this paper, the
mode-matching method is used to investigate the scattering character-
istic of different waveguide junctions formed by an elliptic waveguide
and commonly used waveguide geometries. The waveguide junctions
considered in this paper are: 1) rectangular-to-elliptic; 2) circular-
to-elliptic; and 3) confocal and nonconfocal elliptic-to-elliptic. It is
shown in the a later section that all these types of waveguide-junction
problems can be derived from a generalized formulation and share
the same form of coupling-coefficient expressions.

The mode-matching technique is found to be an elegant method in
tackling waveguide-junction problems. It has been widely employed
in determining discontinuity characteristics in waveguide junctions.
By expanding the modal fields in the waveguides at both sides of
the junction, and then imposing the boundary condition to the modal
fields at the junction plane, the generalized scattering matrix of the
junction can be evaluated.

In the generalized formulation of the waveguide-junction problem,
the modal fields are expressed on both sides of the junction in terms
of Mathieu functions, which leads to exact closed-form expressions
for computing the coupling integrals. All the terms in the coupling
coefficients can then be analytically evaluated with only the exception
of the elliptic-waveguide normalization constant, which has to be
evaluated numerically. As special cases for the generalized formu-
lation, expressions are given in Section IV to evaluate the coupling
coefficients of the junction formed by an elliptic waveguide and three
different waveguide geometries—namely rectangular, circular, and
elliptic.

II. GENERAL WAVEGUIDE-JUNCTION FORMULATION

USING THE MODE-MATCHING METHOD

The configuration of the waveguide-junction problem addressed
in this paper is shown in Fig. 1. The junction is formed by two
air-filled waveguides, waveguide 1 (rectangular, circular, or elliptic)
and waveguide 2 (elliptic), which are concentrically joined at the
z = 0 plane. In this paper, only the case where waveguide 1 is
larger than the elliptic waveguide is studied, i.e., the elliptic cross
section is completely enclosed by the cross-sectional area of the
other waveguide.

The entire waveguide-junction problem can be formulated by
using the generalized scattering-matrix technique [7]. The modal
coefficients of the waveguide modesa, b are related as

a�

b�
=

[S11] [S12]

[S21] [S22]

a+

b+
(1)

where the superscript+ and� represent the transmitted and reflected
wave, respectively.[Sij ] in (1) are submatrices representing the modal

scattering coefficients of theith to jth guide, and these are the
unknowns that need to be determined.

To determine the modal scattering coefficients, the mode-matching
technique can be employed. It basically requires expanding the
electric and magnetic field in both waveguides in terms of their
respective waveguide modes, followed by matching the field at the
junction. Details of the mode-matching procedure for computing the
scattering coefficients of a waveguide junction are well-documented
in the literature [1], [2], [8], and will not be repeated here. Conse-
quently, only the procedures covering the derivation of the coupling
coefficients are presented in this paper.

The coupling matrix[M ], in theE-field mode-matching equation
[1], is defined as

[M ] =
[H] [K]

[G] [F]
(2)

where[H] represents the TE–TE mode-coupling submatrix,[K] for
TE–TM mode coupling,[G] for TM–TE mode coupling, and[F] for
TM–TM mode coupling.

The elements of the submatrices[H]–[F] in (2) are the coupling
coefficients, which are evaluated by the following integrals:

Hmnpq =
S

~ 
h
pq �

~�
h
mn dS (3)

Kmnpq =
S

~ 
e
pq �

~�
h
mn dS (4)

Gmnpq =
S

~ 
h
pq �

~�
e
mn dS (5)

Fmnpq =
S

~ 
e
pq �

~�
e
mn dS (6)

where Se is the cross-sectional area of the elliptic waveguide,
~�mn and ~ pq are, respectively, the transverse-modal electric field
in waveguide 1 and the elliptic waveguide. The superscriptsh, e,
attached to the modal fields, denote TE and TM modes, respectively.
The boundary condition for the electric field atz = 0 plane has been
incorporated in (3)–(6). Consequently, the integrations are performed
over the cross-sectional area of the smaller elliptic waveguide.

Since the solution of the wave equation in waveguide 1 is separable
in the transverse coordinates, the field can be set up in the usual
manner in terms of TE and TM modes. For TM modes, the axial
electric-field componentEz, in the regionz < 0, can be written as

Ez =
m n

'mn(�1; �2) (7)

where�1 and�2 are the transverse coordinates in waveguide 1 and'

is the modal-field function.'mn are the normal-mode functions for
the particular waveguide—for instance, trigonometric functions for
rectangular waveguides. However, for this problem, it is convenient
to expand all the modal fields in terms of Mathieu functions. It is well
known that Mathieu functions are orthogonal and, therefore, form an
orthogonal basis set for the modal-field function'mn. 'mn can then
be expressed as a Mathieu series, andEz can be written as

Ez =

1

m;n

1

k=0

�mn;k
Jek(hmn; u)Sek(hmn; v)

Jok(hmn; u)Sok(hmn; v)
(8)

where�mn;k are the Mathieu series coefficients,Jik(hmn; u) is the
first-kind radial Mathieu function, andSik(hmn; v) is the first-kind
circumferential Mathieu function, in whichi = e or o denote the
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even or odd mode, respectively. The argumenthmn in (8) is

hmn = l�mn

wherel is the focal length of the elliptic coordinate system and�mn

is the TM-mode cutoff wavenumber in waveguide 1. For TE modes,
a very similar expression can be obtained for the axial magnetic-field
componentHz .

Then, from Maxwell equations, the transverse electric-field com-
ponents in waveguide 1, in elliptic coordinate systemû, v̂, are

~�
h
mn =

Nh
mn

W
û�

1

k=0

�
h
mn;k

Jek(h
0

mn; u)Se
0

k(h
0

mn; v)

Jok(h
0

mn; u)So
0

k(h
0

mn; v)

+ v̂

1

k=0

�
h
mn;k

Je0k(h
0

mn; u)Sek(h
0

mn; v)

Jo0k(h
0

mn; u)Sok(h
0

mn; v)
(9)

~�
e
mn =

Ne
mn

W
û

1

k=0

�
e
mn;k

Je0k(hmn; u)Sek(hmn; v)

Jo0k(hmn; u)Sok(hmn; v)

+ v̂

1

k=0

�
e
mn;k

Jek(hmn; u)Se
0

k(hmn; v)

Jok(hmn; u)So
0

k(hmn; v)
(10)

where 0 denotes the derivative of the function with respect to
its coordinate argument,Nmn’s are the normalization constants of
waveguide 1 and

W = l cosh
2
(u)� cos2(v):

The field components in (9) and (10) can be even or odd modes
depending on the incident field in the waveguide.

In the elliptic waveguide, the TE-mode electric field is

~ 
h
pq =

Ch
pq

W
[�ûfJep(h

0

pq; u)Se
0

p(h
0

pq; v)

+ Jop(h
0

pq; u)So
0

p(h
0

pq; v)g+ v̂fJe0p(h
0

pq; u)Sep(h
0

pq; v)

+ Jo
0

p(h
0

pq; u)Sop(h
0

pq; v)g] (11)

while the TM-mode electric field is

~ 
e
pq =

Ce
pq

W
[ûfJe0p(hpq; u)Sep(hpq; v)

+ Jo
0

p(hpq; u)Sop(hpq; v)g+ v̂fJep(hpq; u)Se
0

p(hpq; v)

+ Jop(hpq; u)So
0

p(hpq; v)g] (12)

where theCpq ’s are the normalization constants for the modes in the
elliptic waveguide.

The elliptic aperture problem is a straightforward extension of the
junction problem. It can be considered as two waveguide junctions
connected through a section of elliptic waveguides. The configuration
of the junction with aperture thickness of� is shown in Fig. 2. The
detailed formulation of such a problem is also available in [1].

III. EVALUATION OF COUPLING INTEGRALS

The evaluation of the coupling integrals is the crucial part in for-
mulating waveguide-discontinuity problems. It is always preferable
to compute the coupling integrals in closed-form expressions such
that time-consuming numerical integrations can be avoided. In this
section, it is shown that the four types of coupling integrals presented
in (3)–(6) can be evaluated in closed form.

To simplify the notation in this section,Jpq, Spq is used to
denote the radial- and circumferential-type modal functions in the
elliptic waveguide, whileJmn, Smn represent the modal function

Fig. 2. An elliptic aperture with thickness of� placed between two wave-
guide 1’s.

in waveguide 1. It is also understood that the summation overk is
always associated withJmn, Smn.

A. TE–TM-Mode and TM–TE-Mode Coupling Coefficient

The integral to evaluate TE–TM coupling-coefficient,Kmnpq, and
TM–TE coupling-coefficentGmnpq, has the form

C
I
mnpq =

1

k=0

�mn;k

2�

0

S
0

mnSpq dv
u

0

JmnJ
0

pq du

�
2�

0

SmnS
0

pq dv
u

0

J
0

mnJpq du : (13)

Here, the modal function has been generalized asSxx andJxx, but,
they are either TE or TM modal fields depending on the type of the
coupling integralCI

mnpq.
Equation (13) can be easily simplified using integration by parts as

C
I
mnpq =

1

k=0

�mn;k �[JmnJpq]
u
0

2�

0

S
0

mnSpq dv + Ia (14)

where

Ia =

u

0

JmnJ
0

pq du
2�

0

S
0

mnSpq dv+
2�

0

SmnS
0

pq du :

Furthermore, for the integrals involving circumferential-type Mathieu
functions

2�

0

S
0

mnSpq dv +
2�

0

SmnS
0

pq du = [SmnSpq]
2�
0 = 0 (15)

then Ia = 0 and (14) becomes

C
I
mnpq = �

1

k=0

�mn;k [JmnJpq]
u
0

2�

0

S
0

mnSpq dv : (16)

At this point, it should be recalled that the modal functionsJ andS
consist of even and odd modes. However, by applying the orthogonal
property of Mathieu functions to (16), it is found that the coupling
exists only between even-to-odd and odd-to-even modes. In addition,
because of the properties of radial-type Mathieu function

J(0) = 0; for odd type ofJ
J 0(0) = 0; for even type ofJ

(17)

then (16) vanishes at the limit whenu = 0.
To evaluateKmnpq, TM-mode boundary conditions are imposed

for the elliptic-waveguideJpq(uo) = 0 on (16). Consequently,
Kmnpq is found to be equal to 0 for allpq’s, which is a well-known
result for the TE-to-TM coupling [9].
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ForGmnpq, using the conventional notation, it can be written as

Gmnpq = �Ne
mnC

h
pq�

1

k=0

�
e
mn;kIs

0

k

�
Jek(hmn; uo) Jop(h

0

pq; uo)

Jok(hmn; uo) Jep(h
0

pq; uo)
(18)

where

Is
0

k =

1

s=0

sA
mn
s A

pq
s

andAmn
s andApq

s are the coefficients of the Mathieu functionSmn

and Spq, respectively.

B. TE–TE- and TM–TM-Mode Coupling Coefficients

For TE–TE coupling-coefficientsHmnpq, and TM–TM coupling-
coefficentFmnpq, the common form of the integral is

C
II
mnpq =

1

k=0

�mn;k

2�

0

S
0

mnS
0

pq dv
u

0

JmnJpq du

+

2�

0

SmnSpq dv
u

0

J
0

mnJ
0

pq du : (19)

Employing the relationship of (51), given in the Appendix, and after
some rearrangement of terms, (19) becomes

C
II
mnpq =

1

k=0

�mn;k Ib

u

0

JmnJpq du+

2�

0

SmnSpq dv

� [J
0

mnJpq]
u
0 �

h2mn

h2pq � h2mn

� [J
0

pqJmn�J
0

mnJpq]
u
0

(20)

where

Ib =
apqh

2
mn � amnh

2
pq

h2pq � h2mn

2�

0

S
00

mnS
00

pq dv �
2�

0

SmnSpq dv:

As shown in the Appendix,Ib is equal to 0, thus, (20) reduces to

C
II
mnpq =

1

k=0

�k

2�

0

SmnSpq dv
h2pq

h2pq � h2mn

[J
0

mnJpq]
u
0

�
h2mn

h2pq � h2mn

[J
0

pqJmn]
u
0 : (21)

Analogous to the analysis ofCI
mnpq, the orthogonal properties of

the circumferential-type Mathieu function is applied to (21), then the
mode coupling is found to be restricted to even-to-even and odd-to-
odd modes only. Furthermore,CII

mnpq is equal to 0 atu = 0 because
of (17).

Lastly, the boundary condition of the elliptic waveguide atu = uo

is attached to (21). After imposing the TE-mode boundary condition
J 0pq(uo) = 0, one finds

Hmnpq = N
h
mnC

h
pq�

h 2
pq

h 2
pq � h 2

mn

1

k=0

�
h
mn;kIsk

�
Je0k(h

0

mn; uo) Jep(h
0

pq; uo)

Jo0k(h
0

mn; uo) Jop(h
0

pq; uo)
(22)

where

Isk =

1

s=0

"sA
mn
s A

pq
s :

"s = 2 when s = 0 and "s = 1 when s 6= 0.

On the other hand, the boundary condition ofJpq for the TM mode
requires thatJpq(uo) = 0. Thus,Fmnpq reduces to

Fmnpq = N
e
mnC

e
pq�

h2mn

h2mn � h2pq

1

k=0

�
e
mn;kIsk

�
Jek(hmn; uo) Je0p(hpq; uo)

Jok(hmn; uo) Jo0p(hpq; uo)
: (23)

In the above analysis, the integration, with respect to the argument
v, is converted into a series summation of the Mathieu coefficient
Isk; this is done as the series converges rapidly. Moreover, due to the
highly converging characteristic of the radial-type Mathieu functions,
almost 20 terms of the infinite series are more than sufficient to give
accurate results. The expressions (18), (22), and (23) are general,
and are applicable to any concentric waveguide junction consisting
of a smaller elliptic waveguide, provided the axial fields in the larger
waveguide can be expressed as a Mathieu series.

IV. DIFFERENT GEOMETRIES TOELLIPTIC WAVEGUIDE JUNCTION

In most applications, the dominant mode in a waveguide is of
primary interest, therefore, the analysis given in this section considers
only the dominant mode incident in the larger waveguide. The
evaluation of theS-parameters for higher order incident modes is
a trivial extension of what follows. Under this circumstance, the
symmetry condition of the dominant mode can be imposed on
the modal fields excited at the junction. In addition, the coupling-
coefficient expressions arising from the different geometries differ
only in the coefficients of the Mathieu series�k, and as is shown in
this section, all�k’s can be evaluated by simple expressions.

A. Rectangular to Elliptic

The axial magnetic componentHz, excited by the dominant mode
of the rectangular waveguide, is given as

Hzmn = sin
m�

a
x cos

n�

b
y (24)

wherea andb are the width and height of the rectangular waveguide,
m = odd and n = even. Hzmn can be transformed to elliptical-
coordinate arguments(u; v) as [10]

Hzmn =
p
8�

1

k=0

(�1)k
Se2k+1(hmn; �mn)

Me2k+1(hmn)

� Se2k+1(hmn; v)Je2k+1(hmn; u) (25)

where

�mn = tan
�1 na

mb

hmn = l km
2
+ kn

2

km =
m�

a

kn =
n�

b

andMen(hmn) is the normalization constant of thenth-order even-
Mathieu function with argumenthmn.

When compared with (8) for TE modes, one gets

�
h
mn;k =

p
8�(�1)k

Se2k+1(hmn; �mn)

Me2k+1(hmn)
(26)

where only the even modes with odd order exist.
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The axial electric componentEzmn in elliptic coordinates is

Ezmn =
p
8�

1

k=0

(�1)kSo2k+1(hmn; �mn)

Mo2k+1(hmn)

� So2k+1(hmn; v)Jo2k+1(hmn; u): (27)

Ezmn only consists of odd Mathieu functions with odd order, due to
the symmetry condition imposed by the dominant mode. In a similar
way, the TM mode coefficient�emn;k is obtained as

�
e
mn;k =

p
8�(�1)kSo2k+1(hmn; �mn)

Mo2k+1(hmn)
: (28)

The normalization constant for the rectangular-waveguide mode,
Nmn, is

Nmn =
2

ab kn
2
+ �km

2

(29)

with � = 2, if n = 0, and� = 1, whenn 6= 0.
Using (26), (28), and (29) in (22)–(23), the coupling coefficients

of a rectangular-to-elliptic waveguide junction are obtained directly.

B. Circular to Elliptic

Replacing the rectangular waveguide with a circular waveguide, the
axial magnetic componentHz of the circular waveguide is given as

Hzmn = Jm(�
0

mnr) cos(m�) (30)

whereJm() is the Bessel function. Due to the symmetry condition
of the dominant TE11 mode in the circular waveguide, only oddm’s
are considered andHzmn in elliptic coordinates becomes [11]

Hzmn =
p
2�

1

k=0

j
2k+1�m Aem(2k+ 1; h0mn)

Me2k+1(h0mn)

� Se2k+1(h
0

mn; v)Je2k+1(h
0

mn; u): (31)

where

h
0

mn = l�
0

mn

�0mn is the TE-mode cutoff wavenumber of the circular waveguide
and Aes(k; hmn) represents thesth coefficient for the even-mode
Mathieu function with orderk and argumenthmn.

Comparing (31) with (8), for the TE mode, one has

�
h
mn;k =

p
2� j

2k+1�m Aem(2k + 1; h0mn)

Me2k+1(h0mn)
: (32)

The TM-mode coefficient is found to be

�
e
mn;k =

p
2� j

2k+1�m Aom(2k + 1; hmn)

Mo2k+1(hmn)
(33)

where

hmn = l�mn

and �mn are the TM-mode cutoff wavenumbers of the circular
waveguide.

The normalization constants for the TE mode is

N
h
mn =

2=�

Jm(�0mnR) �0mnR
2 �m2

(34)

and for the TM mode is

N
e
mn =

2=�

�mnRJm(�mnR)
(35)

whereR is the radius of the circular waveguide.
Again, using (32)–(35) in (22)–(23), the coupling coefficients for

circular–elliptic waveguide junction can be evaluated.

TABLE I
CONVERGENCE OFS11 FOR THE RECTANGULAR-TO-ELLIPTIC WAVEGUIDE

JUNCTION AT 12 GHz. RECTANGULAR WAVEGUIDE: a = 22:86, MM b = 10:16

MM. ELLIPTIC WAVEGUIDE: MAJOR AXIS = 15 MM AND MINOR AXIS = 7 MM

C. Elliptic to Elliptic

The last example presented here is the elliptic-to-elliptic
waveguide-junction problem. For this, thez-component of the
magnetic fieldHz in elliptic coordinates is given as [12]

Hzmn = Je2m+1(~h
0

mn; ~u)Se2m+1(~h
0

mn; ~v) (36)

where ~u and ~v are the coordinates in the larger elliptic waveguide.
Only even modes with odd order are considered, as TE11 is the
dominant mode.

In general, (~u; ~v) is different from the elliptic coordinates
in the smaller elliptic-waveguide(u; v), except when the two
elliptic waveguides are confocal. Therefore, the elliptic-to-elliptic
waveguide-junction problem can be considered as two separate
cases—namely, a junction formed by confocal and nonconfocal
elliptic waveguides. In the former case, the coordinate systems
at both sides of the junction coincide, i.e.,~u = u and ~v = v,
while in the latter case, different elliptic coordinate systems exist in
each waveguide. Despite the fact that there are two different cases
for an elliptic-to-elliptic waveguide junction, corresponding to the
confocal and nonconfocal cases, both can be solved by applying the
generalized formulation.

For the confocal elliptic-to-elliptic waveguide-junction problem,
the form ofHz in (36) can be applied directly to the mode-matching
method as it stands. In the larger elliptic waveguide, each modal field
is represented by a single order of the Mathieu function; hence, the
summation series ofk in (22)–(23) vanishes and�k becomes 1. In
addition,hmn in (22)–(23) are simply the cutoff wavenumbers of the
larger elliptic waveguide,~hmn. As expected, with these conditions
applied, the expressions given in the previous section produce the
same coupling-coefficient expressions as in [6].

For the nonconfocal waveguide junction, the modal fields in the
larger elliptic waveguide need to be transformed to the elliptic
coordinates in the smaller waveguide. By using the addition theorem
of Mathieu functions [13],Hz in (36) can be expressed in the(u; v)
coordinate as

Hzmn =

1

k=0

�(�1)k�m
Me2k+1(h0mn)

�
1

s=0

Ae2s+1(2m+ 1; ~h
0

mn)Ae2s+1(2k+ 1; h
0

mn)

� Je2k+1(h
0

mn; u)Se2k+1(h
0

mn; v) (37)

where

h
0

mn =
l2

l1
~h
0

mn

andl1 andl2 are the focal length of the elliptic coordinate system in
the larger and the smaller elliptic waveguides, respectively.
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Fig. 3. Calculated and measured reflection coefficient of an elliptic aperture (major= 15 mm, minor = 7 mm) with thickness of 7.5 mm inside a
X-band rectangular waveguide.

Following the procedure described in Section B, and comparing
(37) with (8), one gets for TE modes

�
h
mn;k =

�(�1)k�m

Me2k+1(h0mn)

1

s=0

Ae2s+1(2m+ 1; ~h
0

mn)

� Ae2s+1(2k + 1; h
0

mn) (38)

and for TM modes

�
e
mn;k =

��(�1)k�m

Mo2k+1(hmn)

1

s=0

Ao2s+1(2m+ 1; ~hmn)

�Ao2s+1(2k + 1; hmn) (39)

where

hmn =
l2

l1
~hmn:

For the TE mode, the normalization constant of an elliptic wave-
guide is

N
h
mn = �

1

s=0

(2s+ 1)
2

(Ae2s+1(2k+ 1; h
0

mn))
2

�

u

0

(Je2k+1(h
0

mn; u))
2

du

+

1

s=0

(Ae2s+1(2k + 1; h
0

mn))
2

�

u

0

(Je
0

2k+1(h
0

mn; u))
2

du

�

(40)

while for the TM mode

N
e
mn = �

1

s=0

(Ao2s+1(2k + 1; hmn))
2

�

u

0

(Jo
0

2k+1(hmn; u))
2

du

+

1

s=0

(2s+ 1)
2

(Ao2s+1(2k+ 1; hmn))
2

�

u

0

(Jo2k+1(hmn; u))
2

du

�

: (41)

In (40) and (41), the integrals involving the coordinate variablev

have been converted into a summation series of Mathieu coefficients.
Thus, only the integrals which involve the radial-type Mathieu
functions are the ones that have to be evaluated numerically.

Once again, (38)–(41), together with (22)–(23), provide all the
expressions required to evaluate the coupling coefficients of a non-
confocal elliptic–elliptic waveguide junction.

V. NUMERICAL CONVERGENCE

One of the key concerns about the mode-matching technique is
relative convergence. The ratio of modes used on both sides of the
junction affects the computation accuracy [7], [14]. To avoid the
relative-convergence problem, the mode-ratio scheme is employed
such that the cutoff wavenumber of the highest mode used in
both waveguides is equal. In other words, for any given num-
ber of modes,N1, which has the highest cutoff wavenumber,
hmaxmn , used in waveguide 1, the number of modes in the elliptic
waveguide,N2, should be chosen so that all modes having the
cutoff wavenumbers equal and smaller thanhmaxmn are included. In
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Fig. 4. Calculated and measured reflection coefficient of an elliptic aperture (major= 18 mm, minor = 8 mm) with thickness of 10 mm inside a
X-band rectangular waveguide.

this paper’s analysis, such a mode-ratio scheme is also applied to
determine the ratio between TE and TM modes used in wave-
guide 1. Therefore, the number of TE and TM modes used in
both waveguides can be uniquely defined by a single value of
h
max

mn
.

Table I clearly shows the convergence of the reflection coefficient
S11 for a rectangular-to-elliptic waveguide junction as a function of
the highest cutoff wavenumber in the rectangular waveguide.

VI. RESULTS

To verify this paper’s theoretical results, the reflection coefficients
of different concentric-elliptic apertures inside a rectangular wave-
guide have been measured. In the first case, an elliptic aperture of
major axis= 15 mm and minor axis= 7 mm was placed in a standard
X-band rectangular waveguide (a = 22:86 mm,b = 10:16 mm). The
theoretical and measured reflection characteristic of the aperture with
the thicknesses of 7.5 mm are shown in Fig. 3. One notices good
agreement between the two sets of results. The theoretical values
were computed using 73 TE and 59 TM modes in the rectangular
waveguide, and 27 TE and 19 TM modes in the elliptic waveguide,
which corresponds to ahmax

mn
of 25.

A second elliptic aperture with major axis= 18 mm, minor
axis = 8 mm, and with thickness of 10 mm was placed in a
X-band waveguide. Fig. 4 shows the theoretical and measured
reflection coefficient, and again, both sets of results show good
agreement. In this case, all the modes having a wavenumber smaller
than 30 were used. This requires 71 TE and 57 TM modes in the
rectangular waveguide, and 36 TE and 27 TM modes in the elliptic
waveguide.

For the circular-to-elliptic waveguide junction, this paper’s results
are compared with a circular-to-circular waveguide junction by
using an elliptic waveguide with a very small eccentricity, i.e., the

TABLE II
CALCULATED S11 COMPARED WITH MEASURED RESULTS

IN [15]. RADIUS OF THE LARGER CIRCULAR WAVEGUIDE = 12:74

MM. THE SMALLER CIRCULAR WAVEGUIDE IS APPROXIMATED

BY AN ELLIPTIC WAVEGUIDE WITH ECCENTRICITY OF 0.04

dimension of the major axis is approximately the same as the minor
axis. Table II shows the authors’ computed results and the measured
results presented in [15]. Both sets of results exhibit good agreement.
For this junction,hmax

mn
of 0.8 and 1.2 were used to define the mode

ratio, respectively, for the case of the elliptic waveguide with minor
axis of 6.35 and 9.525 mm.

VII. CONCLUSION

In this paper, a general solution to the scattering of a waveguide
junction having on one side a smaller elliptic waveguide is pre-
sented. Closed-form expressions for evaluating coupling integrals
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were given to facilitate the use of the mode-matching technique.
The expressions can be applied to other geometries as long as
their axial field component can be expressed as a Mathieu se-
ries—though only rectangular, circular, and elliptic geometries are
formulated in this paper. Good agreement between the theoreti-
cal and experimental results verifies the analysis presented in this
paper.

APPENDIX

Let  i be the solution of the radial-type Mathieu equation, which
satisfies the equation

 
00

i � ai �
hi

2

2
cosh 2u  i = 0 (42)

whereai andhi is, respectively, the characteristic number and the
cutoff wavenumber associated with i.

Suppose 1 and 2 are, respectively, the solution of

 
00

1 � a1 �
h1

2

2
cosh 2u  1 = 0 (43)

and

 
00

2 � a2 �
h2

2

2
cosh 2u  2 = 0: (44)

By multiplying (43) by 2 and (44) by 1, one obtains

 
00

1 2 � a1 �
h1

2

2
cosh 2u  1 2 = 0 (45)

 
00

2 1 � a2 �
h2

2

2
cosh 2u  1 2 = 0: (46)

Subtracting (46) by (45), and integrating with respect tou from
0 to uo, one gets

u

0

 2 1 cosh 2udu =
2

h2
2
� h1

2
[ 

0

2 1 �  
0

1 2]
u

0

�

2(a2 � a1)

h2
2
� h1

2

u

0

 2 1 du: (47)

From (45), one has

[ 
0

1 2]
u

0
�

u

0

 
0

1 
0

2

= a1

u

0

 1 2 du�
h1

2

2

u

0

 1 2 cosh 2udu: (48)

Substituting (47) into (48), yields

u

0

 
0

1 
0

2 du = [ 
0

1 2]
u

0
�

h2
2

h2
2
� h1

2
[ 

0

2 1 �  
0

1 2]
u

0

+
a2h1

2
� a1h2

2

h2
2
� h1

2

u

0

 1 2 du: (49)

Following the same procedure, one gets a very similar expression
for the circumferential-type Mathieu function� as

2�

0

�
0

1�
0

2 du�
a1h2

2
� a2h1

2

h2
2
� h1

2

2�

0

�1�2 du

= [�
0

1�2]
2�

0 �

h1
2

h2
2
� h1

2
[�

0

2�1 � �
0

1�2]
2�

0 : (50)

Owing to the fact that

�
0

(0) = �
0

(2�) and �(0) = �(2�)

for both even and odd modes, the right-hand sides of (50) are equal
to 0, then

2�

0

�
0

1�
0

2 du�
a1h2

2
� a2h1

2

h2
2
� h1

2

2�

0

�1�2 du = 0: (51)
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