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IV. CONCLUSION

In this paper, a very simple new-channel-current model has beetfw
proposed, which can represent the frequency-dispersion effects due to
traps, channel temperature effect, and higher order derivative terms of
I4s. The derivative terms are important for predicting nonlinear circuit
performance. The model parameters are extracted from the guléed
measurements at several ambient temperatures and quiescent biggsiract—A concentric waveguide junction consisting of an elliptic
points. The extraction procedure is straightforward and simple. Waveguide has been formulated using the mode-matching method. The
order to validate this model, a large-signal model has been extractedhulation is a generalized solution of the problem such that the second
for OKI KGF-1284 and Kukje MESFET. The extracted large-signa¥@veguide, which forms the junction, can be any regular shape in

. - . crpss section. Exact closed-form expressions for computing the coupling
MESFET models have been implemented using SDD in HP'EEsiﬂ egrals have been obtained from the generalized formulation. As a

MDS. By comparing the pulsel-V and S-parameter measurementsspecial case of the general solution, the expressions for evaluating the cou-
with simulation results, the accuracy of this model was verified. Thiding integrals of rectangular-to-elliptic, circular-to-elliptic, and elliptic-
model has also been applied to the design of nonlinear circuits stietglliptic waveguide junction are given. Theoretical results compare well
as power amplifiers and mixers. The harmonic-balance simulatiof&? the experimental and published results.

with the proposed model and the experimental results for fabricatedndex Terms—Elliptic waveguide, mode-matching method, waveguide
circuits confirm the accuracy of the proposed modeling. junction.

o-Port Scattering at an Elliptic-Waveguide Junction
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Waveguide 1 scattering coefficients of théth to jth guide, and these are the
o ) unknowns that need to be determined.
1 Elliptic waveguide To determine the modal scattering coefficients, the mode-matching
— gt I _ technique can be employed. It basically requires expanding the
— P2 * —' 2+ electric and magnetic field in both waveguides in terms of their

respective waveguide modes, followed by matching the field at the
junction. Details of the mode-matching procedure for computing the
! scattering coefficients of a waveguide junction are well-documented
s in the literature [1], [2], [8], and will not be repeated here. Conse-
quently, only the procedures covering the derivation of the coupling
coefficients are presented in this paper.

Fig. 1. Waveguide 1 to elliptic-waveguide junction. The coupling matrix 3], in the E-field mode-matching equation
[1], is defined as

z=0

characteristic of a waveguide junction formed by two concentric-

confocal-elliptic waveguides. However, the discontinuity involving [M] = {
elliptic waveguides has received scant attention. In this paper, the

mode-matching method is used to investigate the scattering characig{are [H] represents the TE-TE mode-coupling submatii] for
istic of different waveguide junctions formed by an elliptic waveguid¢ £_1m mode coupling|G] for TM=TE mode coupling, anfF] for
and commonly used waveguide geometries. The waveguide junctigy§_1tm mode coupling.

considered in this paper are: 1) rectangular-to-elliptic; 2) circular- The elements of the submatricB&]—[F] in (2) are the coupling

to-elliptic; and 3) confocal and nonconfocal elliptic-to-elliptic. It is . . L ]
. . SO coefficients, which are evaluated by the following integrals:
shown in the a later section that all these types of waveguide-junction

problems can be derived from a generalized formulation and share -
Hmnpq :/

H] (K]
[G] [F] } @

. .. . wh '511 s (3)
the same form of coupling-coefficient expressions. Ypq " Pmn &

The mode-matching technique is found to be an elegant method in

tackling waveguide-junction problems. It has been widely employed Konnpq = / ey O, dS (4)
in determining discontinuity characteristics in waveguide junctions. Se

By expanding the modal fields in the waveguides at both sides of G :/ o e dS (5)

. . . . o mnpq Y pq Ymn

the junction, and then imposing the boundary condition to the modal Se

fields at the junction plane, the generalized scattering matrix of the Lo o

: . F]ﬂnpq = L”‘pq * Dmn ds (6)
junction can be evaluated. s.

In the generalized formulation of the waveguide-junction problem,
the modal fields are expressed on both sides of the junction in terdere S. is the cross-sectional area of the elliptic waveguide,
of Mathieu functions, which leads to exact closed-form expressiofis.» and v, are, respectively, the transverse-modal electric field
for computing the coupling integrals. All the terms in the couplingn waveguide 1 and the elliptic waveguide. The superscripts,
coefficients can then be analytically evaluated with only the exceptiattached to the modal fields, denote TE and TM modes, respectively.
of the elliptic-waveguide normalization constant, which has to bEhe boundary condition for the electric field at= 0 plane has been
evaluated numerically. As special cases for the generalized fornimeorporated in (3)—(6). Consequently, the integrations are performed
lation, expressions are given in Section IV to evaluate the coupligger the cross-sectional area of the smaller elliptic waveguide.
coefficients of the junction formed by an elliptic waveguide and three Sjnce the solution of the wave equation in waveguide 1 is separable
different waveguide geometries—namely rectangular, circular, afiflthe transverse coordinates, the field can be set up in the usual
elliptic. manner in terms of TE and TM modes. For TM modes, the axial
electric-field componenE., in the regionz < 0, can be written as
Il. GENERAL WAVEGUIDE-JUNCTION FORMULATION
USING THE MODE-MATCHING METHOD B.=3 % (G G) (7)

The configuration of the waveguide-junction problem addressed
in this paper is shown in Fig. 1. The junction is formed by twavhere¢; and(. are the transverse coordinates in waveguide 1,and
air-filled waveguides, waveguide 1 (rectangular, circular, or ellipti¢y the modal-field functione.., are the normal-mode functions for
and waveguide 2 (elliptic), which are concentrically joined at thghe particular waveguide—for instance, trigonometric functions for
z = 0 plane. In this paper, only the case where waveguide 1 jgctangular waveguides. However, for this problem, it is convenient
larger than the elliptic waveguide is studied, i.e., the elliptic crogg expand all the modal fields in terms of Mathieu functions. It is well
section is completely enclosed by the cross-sectional area of g,y that Mathieu functions are orthogonal and, therefore, form an

othTehr wavsgwde. ide-iuncti bl be f lated orthogonal basis set for the modal-field functipi .. ¢~ can then
€ entire waveguide-junction problem can be formuiate 3{3 expressed as a Mathieu series, &hdcan be written as

using the generalized scattering-matrix technique [7]. The mo
coefficients of the waveguide modesb are related as i i Jer (o s 1) Ser (B v)
E: = A’\rnn,k{ ) ”7”1” / T ,/ } (8)
=] _ [i5n] [Si]][a* (1) i Totlbonn 1) 501 (R, v)
| [521] [522] bt

whereA ..., are the Mathieu series coefficientBy (hmn, «) is the
where the superscript and— represent the transmitted and reflectedirst-kind radial Mathieu function, andi (fmn.,v) is the first-kind
wave, respectivelyf.S;;] in (1) are submatrices representing the modalircumferential Mathieu function, in which = e or o denote the
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even or odd mode, respectively. The argumient, in (8) is Elliptic aperture
h7nn = l,ﬁm,n
where! is the focal length of the elliptic coordinate system ahgl, Waveguide 1 Waveguide 1
is the TM-mode cutoff wavenumber in waveguide 1. For TE modes,
a very similar expression can be obtained for the axial magnetic-field
componentH. .
Then, from Maxwell equations, the transverse electric-field com- !
ponents in waveguide 1, in elliptic coordinate systénv, are L
—h Nj;m R i A Jeg(h! mm 1) Sek(Dlhn, V) Fig. 2. An elliptic aperture with thickness efplaced between two wave-
émn = 17 u— ZAmn,k ! ;o guide 1's.
W E—0 JOI\( Yy ! )S Oy, ( v U)
+ 0 ZAmn . Tek (b w)Sek (hunn, v) (9) in waveguide 1. It is also understood that the summation évisr
Joi (s ) Sor (R, v) . .
always associated With.,, Spn-

ne > !
e _ —’\ mn | ~ ,\c Jeh:(]lrreraU')Sek(hmmv)
an, n — u E Amn k !
k=0

w Tl (R s w) S0k (hmn, v) A. TE-TM-Mode and TM-TE-Mode Coupling Coefficient

The integral to evaluate TE-TM coupling-coefficieRt, ..., and

-~ - A€ Jek(hmnyVU)SE;‘:(hmn,a'U) . -
+ 0 ,;A"”’“’k{»fok(hmn,u)SoL,(hmn,U) (10) TM-TE coupling-coefficentG mupq, has the form

its coordinate argumenty,,,’s are the normalization constants of
waveguide 1 and 2w "o
9 - / Spun Sh, di / Tdog du}. 13)
0 0

W =1 sh? (w) — cos?(v).
\/COS () = cos?(v) Here, the modal function has been generalized asand.J,., but,

The field components in (9) and (10) can be even or odd mod@?y are either TE or TM modal fields depending on the type of the
depending on the incident field in the waveguide. coupling integralCrpq. L _
In the elliptic waveguide, the TE-mode electric field is Equation (13) can be easily simplified using integration by parts as

oo 2 U o
where / denotes the derivative of the function with respect to  Cl,q = Z\k{/ SrunSpq dv/ Tonn g du
k=0 0 0

h

e 27
. O I _ / Uo ! ’
'L/'fl}fq = W[—u{ Tep(hpq u)Se (hpq ) Cmnpq - ZA‘"”LJ«{ []mn pqlo /0 Smnqu du—I—Ia} (14)
k=0
+ ]0,)(hpq,' )So, ( pgs V) )+ D {](’ (h! pgs ¢ )Scp(h;q,w)
where
+Jo! (hpq,' Sop(hpq.,mr)}] (12)
U o 27 27
while the TM-mode electric field is Ia 2/0 Trn Ty du </0 SranSpq (“"1'/0 SrmnSp d”)
Upg = C [1[{](’ (hpqs 1) Sep(hpg,v) Furthermore, for the integrals involving circumferential-type Mathieu
. , functions
+ Jop(hpq w)S0p(hpg,v)} + 0{Jep(hpg,u)Sep, (hpg,v)
27 27
+ Jop(hpg,u)Soy(hpe, v)}] (12) / S0 Spg du + / SonShy du = [SmnSple™ =0 (15)
0 0

where theC),,’'s are the normalization constants for the modes in th
elliptic waveguide.

The elliptic aperture problem is a straightforward extension of the oo .
junction problem. It can be considered as two waveguide junctions Cmnpq =— Zz\,,m,k{[,]mn,]pq 30/ S Spq dv}. (16)
connected through a section of elliptic waveguides. The configuration 0
of the junction with aperture thickness ofis shown in Fig. 2. The
detailed formulation of such a problem is also available in [1].

%en Ia = 0 and (14) becomes

At this point, it should be recalled that the modal functidnand.S
consist of even and odd modes. However, by applying the orthogonal
property of Mathieu functions to (16), it is found that the coupling
lIl. EVALUATION OF COUPLING INTEGRALS exists only between even-to-odd and odd-to-even modes. In addition,

because of the properties of radial-type Mathieu function
The evaluation of the coupling integrals is the crucial part in for- prop P

mulating waveguide-discontinuity problems. It is always preferable J(0) =0, for odd type ofJ

to compute the coupling integrals in closed-form expressions such {J’(O) =0, for even type of/ A7)

that time-consuming numerical integrations can be avoided. In this

section, it is shown that the four types of coupling integrals presenteégen (16) vanishes at the limit when= 0.

in (3)—(6) can be evaluated in closed form. To evaluateK,...,, TM-mode boundary conditions are imposed
To simplify the notation in this section/,,, Sy is used to for the elliptic-waveguideJ,,(u,) = 0 on (16). Consequently,

denote the radial- and circumferential-type modal functions in tH€...,,q is found to be equal to O for aflg’s, which is a well-known
elliptic waveguide, whileJ,,.., S.... represent the modal function result for the TE-to-TM coupling [9].
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For G..npq, USiNg the conventional notation, it can be written as On the other hand, the boundary condition/of for the TM mode
requires that/,,(u.) = 0. Thus,Fmnpq reduces to

o

ATE h e !

Gmnpq = :i:j\’mnc‘pq”T E Amn,kISk
k=0

Tex (hm" ’ u") Joll(h;)qw uo)
{.]Ok(hmn,u,o) JC’p(h,’ ‘uo) (18)

rq’

12 ad

L ,

TE € mn €

Funpq = ‘Nrnncpqﬂ—ﬁ E A kI sk
“mn 2L

X {Jel;(h’rmv 'UU) J(i;)(hpfl'/ uv) } (23)

where Jog(hmn, o)  Jo,(hpg, o)
Is — i G 4™ AP In the above analysis, the integration, with respect to the argument
o 310“ c v, is converted into a series summation of the Mathieu coefficient

. . o ) ) Isy; this is done as the series converges rapidly. Moreover, due to the
and A" and A3 are the coefficients of the Mathieu functidi..  highly converging characteristic of the radial-type Mathieu functions,

and 5y, respectively. almost 20 terms of the infinite series are more than sufficient to give
accurate results. The expressions (18), (22), and (23) are general,
B. TE-TE- and TM-TM-Mode Coupling Coefficients and are applicable to any concentric waveguide junction consisting
For TE-TE coupling-coefficientsL .., and TM=TM coupling- Of @ smaller elliptic waveguide, provided the axial fields in the larger
coefficentF,,..,4, the common form of the integral is waveguide can be expressed as a Mathieu series.
1 > 27 Ug
_ / ! ! 1. ’
Crnnpa = ;A"’”’k{/{) StmnSpq dU/O TmnTpq du IV. DIFFERENT GEOMETRIES TOELLIPTIC WAVEGUIDE JUNCTION
27 o In most applications, the dominant mode in a waveguide is of
+ / SranSpq dv / JrnJTpq d’”}- (19)  primary interest, therefore, the analysis given in this section considers
0 only the dominant mode incident in the larger waveguide. The
Employing the relationship of (51), given in the Appendix, and aftegvaluation of theS-parameters for higher order incident modes is
some rearrangement of terms, (19) becomes a trivial extension of what follows. Under this circumstance, the
symmetry condition of the dominant mode can be imposed on
o 37 w2 . - . . ey .
Mmoo ° the modal fields excited at the junction. In addition, the coupling-
Crunpq = Z‘/\”’“v"{lb/o TmnTpg du +/0 Smn Spq A1 coefficient expressions arising from the different geometries differ

=0 only in the coefficients of the Mathieu seridg, and as is shown in

2
X <[J,’m Tpglo® — ]Zhﬁ X [J;qJ,,L,L—J,’nnJ,,q go)} this section, allA;’s can be evaluated by simple expressions.
7'pq - mn
(20) o
where A. Rectangular to Elliptic
apgh2 — @mnh2, (27 27 The axial magnetic componeftz, excited by the dominant mode
Ib = #ﬂpq/ SranSpq dv — / SinnSpq dv. of the rectangular waveguide, is given as
Pq T 0 0
. . . . mm nmw
As shown in the Appendixdb is equal to 0, thus, (20) reduces to Hzpmn = sin ( p T) cos (TU) (24)
> 2w hZ wherea andb are the width and height of th t I id
T ’ ) va ) v, 1 ght of the rectangular waveguide,
Crnnpa = ;\‘{/0 S S dv(hgq — hZ,, [ Tpalo m = odd andn = even. Hz,,, can be transformed to elliptical-
B B2 coordinate argumentgu, v) as [10]
— " ] Jmnls® ) b 21
h%q _ h?nn [ Prq ](J )} ( )

Analogous to the analysis &.,.,,, the orthogonal properties of k=0 Messa (B
the circumferential-type Mathieu function is applied to (21), then the X Sezpr1(hmn, v) S e2pr1(Mmn, u) (25)
mode coupling is found to be restricted to even-to-even and odd-to-
odd modes only. Furthermoré;,ﬂﬁnpq is equal to 0 at: = 0 because where
of (17). _i/na
Lastly, the boundary condition of the elliptic waveguide:at u,, O = tan (%)
is attached to (21). After imposing the TE-mode boundary condition B = Ik 2 1 B2

J,(u) = 0, one finds

k= 2T
02 i n(;r
h h Y h .
Hmnpq = N C«\quﬂ-hl,;_37 —qh:;‘:n ZAmmkISk kn = T
k=0
Jeh,(hyuny o) Jep(hpg,tio) (22) and Me, (hmy») is the normalization constant of theh-order even-
Jol (Rrns o) Jop(Tyy, o) Mathieu function with argument,,, ..
where When compared with (8) for TE modes, one gets
— Amn '5621\: 1(hmn le)mn)
Isp =S e, A" AR Al k= VBr(—1)F 2222 d
sk ; oAl mn g = VBT(=1) S (26)

es =2 whens = 0 and=, = 1 whens # 0. where only the even modes with odd order exist.
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The axial electric componerf z,..,, in elliptic coordinates is TABLE |
CONVERGENCE OFS11FOR THE RECTANGULAR-TO-ELLIPTIC WAVEGUIDE
Bz = /_Z /c 502441 (hann . ) JUNCTION AT 12 GHz. RECTANGULAR WAVEGUIDE: a = 22.86, MM b = 10.16
e Moogy1 (h,,m) MM. ELLIPTIC WAVEGUIDE: MAJOR AXIS = 15 MM AND MINOR AXIS = 7 MM
xS 02k+1(hmn, 7))J 02k+1(hmn-, Ur). (27) Highest cutoff |Rectangular waveguide|Elliptic waveguide |Reflection Coefficient
. . . i wavenumber No. of modes No. of modes St1
Ez... only consists of odd Mathieu functions with odd order, due to  ppq TE ™ TE TM |Magnitude] Phase
the symmetry condition imposed by the dominant mode. In a similar __12 18 11 7 3 06213 | 4275
way, the TM mode coefficiends,,, , is obtained as 15 28 20 1 6 06247 | 44.39
20 47 36 19 11 06249 | 4440
S £ S028+41 (Rrnn, Ormn) 25 73 59 27 19 0.6250 | 44.48
\77171 k= ( 1) . (28)
A[Ozurl(hmn)
The normalization constant for the rectangular-waveguide modé)
N is Elliptic to Elliptic
9 The last example presented here is the elliptic-to-elliptic
Nopn = > > (29) waveguide-junction problem. For this, the-component of the
“b(kn‘ + Ukm‘) magnetic fieldH z in elliptic coordinates is given as [12]

with ¢ = 2, if n = 0, ande = 1, whenn # 0. .
! ! ’ H~mn — 2m ’77777 m ’mn )
Using (26), (28), and (29) in (22)—(23), the coupling coefficients Jezma 1) Sezm( ) (36)

of a rectangular-to-elliptic waveguide junction are obtained directlmhereﬂ and @ are the coordinates in the larger elliptic waveguide.

Only even modes with odd order are considered, as; TE the
B. Circular to Elliptic dominant mode.
Replacing the rectangular waveguide with a circular waveguide, theln general, (a,7) is different from the elliptic coordinates
axial magnetic componer = of the circular waveguide is given asin the smaller elliptic-waveguidgu,v), except when the two
e — T (3 0 30 elliptic waveguides are confocal. Therefore, the elliptic-to-elliptic
Zmn = T (Fnt) cos(mf) (30) waveguide-junction problem can be considered as two separate
where J,,,() is the Bessel function. Due to the symmetry conditiogaseés—namely, a junction formed by confocal and nonconfocal
of the dominant Tl mode in the circular waveguide, only ogd's  elliptic waveguides. In the former case, the coordinate systems

are considered andf z,,.,, in elliptic coordinates becomes [11] at both sides of the junction coincide, i.ei, = v andv = v,
while in the latter case, different elliptic coordinate systems exist in
He,, = ‘/—Z k41— ) Aem (2k + 1 by ) each waveguide. Despite the fact that there are two different cases
Meakt1 (i) for an elliptic-to-elliptic waveguide junction, corresponding to the
« 56)k+1(hmn V) Tesit(hlns ). (31) confocal and nonconfocal cases, both can be solved by applying the
generalized formulation.
where For the confocal elliptic-to-elliptic waveguide-junction problem,
Woo—18. the form of H z in (36) can be applied directly to the mode-matching

method as it stands. In the larger elliptic waveguide, each modal field
Bran is the TE-mode cutoff wavenumber of the circular waveguidis represented by a single order of the Mathieu function; hence, the
and Ae,(k, h.n) represents thaeth coefficient for the even-mode summation series of in (22)—(23) vanishes and, becomes 1. In

Mathieu function with orde and argument: ., . addition, .., in (22)—(23) are simply the cutoff wavenumbers of the
Comparing (31) with (8), for the TE mode, one has larger elliptic waveguidel...,. As expected, with these conditions
Aem (2 +1,1,,) applied, the expressions given in the previous section produce the

‘/\':lnn,li‘:\/z_(J2k+l m)

(32) same coupling-coefficient expressions as in [6].

M hew T . ) .
o ezt (hinn) For the nonconfocal waveguide junction, the modal fields in the
The TM-mode coefficient is found to be larger elliptic waveguide need to be transformed to the elliptic
\¢ \/ﬁ( YRR ) Ao (2k + 1, himn) (33) coordinates in the smaller waveguide. By using the addition theorem
Smnk = Mosgi1(hmn) of Mathieu functions [13]H = in (36) can be expressed in the, v)
where coordinate as
e —(_1\k—m
hmn = l,‘j‘mn Hlmn — Z L
. — A”L[62k+l(h£nn)
and 3,., are the TM-mode cutoff wavenumbers of the circular k=0
waveguide. = -, ,
. . . Aess 29 Aeoss 2k . )
The normalization constants for the TE mode is x {2(;‘4625“("" + L b ) Aezo 2k + 1 h'“”)}
NEo— 2/m (34) X Jeok i1 (A, 1) Seak 1 (hppsv) (37)
’ ']m (/d;nnR) V /%’nnRz —m?
and for the TM mode is where
: 2/ lo ~
AV R St — 35 ’ _ 2
S R (Bn R) (39) rmm = 7 P

where R is the radius of the circular waveguide.
Again, using (32)—(35) in (22)—(23), the coupling coefficients foand/; and/, are the focal length of the elliptic coordinate system in
circular—elliptic waveguide junction can be evaluated. the larger and the smaller elliptic waveguides, respectively.
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Fig. 3. Calculated and measured reflection coefficient of an elliptic aperture (reajgb mm, minor = 7 mm) with thickness of 7.5 mm inside a
X-band rectangular waveguide.

Following the procedure described in Section B, and comparimghile for the TM mode
(37) with (8), one gets for TE modes

AL p— / D s 2
\h 71—(_1)"'—'” irle (2”1 + 1 i’ll ) *7\77171 - W{Zo(flolw-‘rl(Zk + 17 hnz‘n))
Xmnk = Tr 717 €25 g s lmn =
F T Mesgyr (W) =700 v ,
-, X / (Jogkg1(Mmn,u))” du
X A623+1(2k + 1, hmn) (38) 0
(25 4+ 1)%(Aosers (2k + 1, b ))?
and for TM modes +3:o( s+ 1) (Aozer1 2k + 1, hmn )
_1
. L, oo U 2
AS k= Ll)k_m ZAOZH-L(??TL +1, ilmn) x / °(J02k+1(hmn,u))2 du . (41)
’ JL[OZkJrl (hmn ) 0 0
X /402_34,1(2]{ + 1, hmn) (39)
In (40) and (41), the integrals involving the coordinate variable
where have been converted into a summation series of Mathieu coefficients.
Thus, only the integrals which involve the radial-type Mathieu
P 1377 functions are the ones that have to be evaluated numerically.
L P Once again, (38)—(41), together with (22)—(23), provide all the

o o expressions required to evaluate the coupling coefficients of a non-
For the TE mode, the normalization constant of an elliptic wavegniocal elliptic—elliptic waveguide junction.

guide is
V. NUMERICAL CONVERGENCE

Nt = |:7T{Z(28 + 1)*(Aess1 (2k 4+ 1,0),,))° One of the key concerns about the mode-matching technique is
relative convergence. The ratio of modes used on both sides of the

s=0

o / 2 junction affects the computation accuracy [7], [14]. To avoid the
% /U (Jezkpa (B, )" du relative-convergence problem, the mode-ratio scheme is employed
o ‘ such that the cutoff wavenumber of the highest mode used in
+Z(Aegs+1(2k+l,hi,m))‘) both waveguides is equal. In other words, for any given num-
5=0 ber of modes,N1, which has the highest cutoff wavenumber,
‘g -3 heX, used in waveguide 1, the number of modes in the elliptic
X / (Je;kﬂ(h'mn,u))QduH (40) waveguide, N2, should be chosen so that all modes having the
0 cutoff wavenumbers equal and smaller thgh.* are included. In
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Fig. 4. Calculated and measured reflection coefficient of an elliptic aperture (rgaj@8 mm, minor = 8 mm) with thickness of 10 mm inside a
X-band rectangular waveguide.

this paper’'s analysis, such a mode-ratio scheme is also applied to TABLE I
determine the ratio between TE and TM modes used in wave- CALCULATED S11 (OMPARED WITH MEASURED RESULTS
guide 1. Therefore, the number of TE and TM modes used in N [15]. RaDIUS OF THE LARGER CIRCULAR WAVEGUIDE = 12.74

. . ) - MM. THE SMALLER CIRCULAR WAVEGUIDE |S APPROXIMATED
both waveguides can be uniquely defined by a single value of BY AN ELLIPTIC WAVEGUIDE WITH ECCENTRICITY OF 0.04

[/ i
Table | clearly shows the convergence of the reflection coefficient rickness|frequency Reflection Cosfficient S11
S11 for a rectangular-to-elliptic waveguide junction as a function of (mm.) GHz) Ref. [15] Thearetical
the highest cutoff wavenumber in the rectangular waveguide. Magnitude  Phase | Magnitude Phase
2.54 9 0.956 158.1 0.965 158 4
12 0.610 118.3 0.615 116.2
VI. RESuULTS 5.08 9 0.981 160.6 0.989 160.7
. . , . . - 12 0.803 123.4 0.800 121.3
Tq verify this paper's th_eqretlcal resultg, t_he reflection coefficients  gog=rtre smaiier Ciroular waveguide = 6 35mm
of _dlfferent concentric-elliptic apertures inside a rect_an_gular Wave-  Thickness|frequency Reflection Coafficient 511
guide have been measured. In the first case, an elliptic aperture of  (mm) (GHz) Ref. [15] Theoretical
major axis= 15 mm and minor axis= 7 mm was placed in a standard Magnitude Phase | Magnitude Phase
2.54 9 0.335 96.6 0.332 96.5

X -band rectangular waveguide € 22.86 mm,b = 10.16 mm). The

theoretical and measured reflection characteristic of the aperture with 57 192 8:(7)3:13 '2?:3 g:ggg '1233:2
the thicknesses of 7.5 mm are shown in Fig. 3. One notices good 2 0.051 1611 0036 1502
agreement between the two sets of results. The theoretical values Radius of the smaller circular waveguide = 9.525mm

were computed using 73 TE and 59 TM modes in the rectangular

waveguide, and 27 TE and 19 TM modes in the elliptic waveguide,

which corresponds to &7,%° of 25.

- . . . . dimension of the major axis is approximately the same as the minor
A second elliptic ap_erture_ with major axis: 18 mm, MINOT * axis. Table Il shows the authors’ computed results and the measured

azus = 8 mm, "?‘”d W'.th thickness of 10 mm was placed in Fesults presented in [15]. Both sets of results exhibit good agreement.

A-band waveguide. Fig. 4 shows the theoretical and measuy this junction h;,%* of 0.8 and 1.2 were used to define the mode

reflection coeﬁlc_|ent, and again, both set_s of results show 90p, io, respectively, for the case of the elliptic waveguide with minor
agreement. In this case, all the modes having a wavenumber sm L of 6.35 and 9.525 mm

than 30 were used. This requires 71 TE and 57 TM modes in the
rectangular waveguide, and 36 TE and 27 TM modes in the elliptic
waveguide.

For the circular-to-elliptic waveguide junction, this paper’s results In this paper, a general solution to the scattering of a waveguide
are compared with a circular-to-circular waveguide junction bjinction having on one side a smaller elliptic waveguide is pre-
using an elliptic waveguide with a very small eccentricity, i.e., theented. Closed-form expressions for evaluating coupling integrals

VII. CONCLUSION
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were given to facilitate the use of the mode-matching technique.Owing to the fact that

The expressions can be applied to other geometries as long as

their axial field component can be expressed as a Mathieu se- 6'(0)=¢'(2r) and ¢(0) = ¢(27)
ries—though only rectangular, circular, and elliptic geometries are

formulated in this paper. Good agreement between the theore§ir poth even and odd modes, the right-hand sides of (50) are equal
cal and experimental results verifies the analysis presented in s, then

paper.
2 2 2 27
o arhe® — azhy /
G109 du — ——5———F5— O1¢2 du = 0. 51
APPENDIX /o s he? —hi? o 7 D)
Let ¢); be the solution of the radial-type Mathieu equation, which
ACKNOWLEDGMENT

satisfies the equation

) The authors wish to acknowledge the Department of Electronic
Pl — <m' _ hZ cosh 21,,)14,1. =0 (42) Engineering of the University of Hull, for support, Dr. F. A. Alhargan
2 for many helpful discussions on Mathieu functions, and J. Hogdson

for making the elliptic apertures.
wherea; andh; is, respectively, the characteristic number and the

cutoff wavenumber associated with . REFERENCES
Suppose); andy- are, respectively, the solution of
[1] J. D. Wade and R. H. Macphie, “Scattering at circular-to-rectangular
B2 waveguide junctions,/EEE Trans. Microwave Theory Te¢lol. MTT-
oy — <a1 _ ot LO‘:,hQu)L/'l =0 (43) 34, pp. 1085-1091, Nov. 1986.
[2] R.H.MacPhie and K. L. Wu, “Scattering at the junction of a rectangular
waveguide and a larger circular waveguidéEEE Trans. Microwave
and Theory Tech.vol. 43, pp. 2041-2045, Sept. 1995.
9 [3] R. Safavi-Naini and R. H. MacPhie, “On solving waveguide junction
ol — <a~> _ hL cosh?u)z{rz -0 (44) scattering problems by the conservation of complex power technique,”
2 - p ’ IEEE Trans. Microwave Theory Teghlvol. MTT-29, pp. 337-343, Apr.
1981.
By multiplying (43) by > and (44) by, one obtains [4] H. Patzelt and F. Arndt, “Double-plane steps in rectangular waveguides
and their application of transformers, irises, and filtetl€EE Trans.
2 Microwave Theory Techvol. MTT-30, pp. 771-776, May 1982.
Py Py — <a,1 — — cosh 21/,)1/)11/12 =0 (45) [5] C. Sabatier, “Scattering at an offset circular hole in a rectangular
2 waveguide,1EEE Trans. Microwave Theory Teghol. 40, pp. 587-592,
" ho? ’ Mar. 1992.
Yy 1 — <<l‘z -5 cosh 2u)uw2 =0. (46)  [6] R.Bunger P. Martas, and F. Arndt, “Mode-matching analysis of the step
discontinuity in elliptical waveguide,1JEEE Microwave Guided Wave
Lett, vol. 6, pp. 143-145, Mar. 1996.
Subtracting (46) by (45), and integrating with respectutérom [71 R. Mittra and S. W. LeeAnalytical Techniques in the Theory of Guided
0 to u,, one gets Waves New York: Macmillan, 1971.
[8] T. Itoh, Numerical Techniques for Microwave and Millimeter-Wave

Uy Passive Structure New York: Wiley, 1989.
/ Y211 cosh 2u du = — S[whtn — via]he [9] G. G. Gentili, “Properties of TE-TM mode-matching techniqudEEE
0 12" — Iy Trans. Microwave Theory Techeol. 39, pp. 1669-1673, Sept. 1991.
2(as —ar) [ ) [10] R. Oberhettinger A. Erdelyi, W. Magnus, and F. G. Tricormdigher
- m /0 oty du.  (47) Transcendental Functionsol. Ill. New York: McGraw-Hill, 1955.

[11] P. M. Morse and H. FeshbacNhlethods of Theoretical Physics New
York: McGraw-Hill, 1953.
N. W. Mclachlan,Theory and Application of Mathieu FunctiansLon-
don, U.K.: Oxford Univ. Press, 1947.
vy /‘“0 o [13] F. W. Schafke, J. Meixner, and G. Woliyiathieu Functions and
—_ 1 v1 )
0

From (45), one has [12]

I
[V71 4] Spheroidal Functions and Their Mathematical FoundationBerlin,
o W2 Germany: Springer-Verlag, 1980.
_ o S o0 [14] F. Alessabdri, R. Sorrentino, M. Mongiardo, and G. Schiavon, “An
= Yiab du — —— Y112 cosh 2u du. : 558 . ! .
“ /0 Y112 du / Y192 cosh 2u du (48) investigation of the numerical properties of the mode-matching tech-
nique,” Int. J. Numerical Modeling: Electron. Networks, Devices and
Substituting (47) into (48), yields Fields vol. 4, pp. 19-43, 1991. o o
g (47) (48). y [15] R. W. Scharstein and A. T. Adams, “Thick circular iris in a{fEmode
circular waveguide,IEEE Trans. Microwave Theory Teghvol. 36, pp.

et Tue ho 1529-1531, Nov. 1988.
1y du = [¥102]0° — 55 [Vt — Y1e]g
0 ho® — hy
ashi® —arhe? "
4 el —aiha” / b1y d. (49)
ho® — h1” 0

Following the same procedure, one gets a very similar expression
for the circumferential-type Mathieu functiam as
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